Positive Dependence and Weak Convergence
نویسنده
چکیده
A more general definition of MTP2 (multivariate total positivity of order 2) probability measure is given, without assuming the existence of a density. Under this definition the class of MTP2 measures is proved to be closed under weak convergence. Characterizations of the MTP2 property are proved under this more general definition. Then a precise definition of conditionally increasing measure is provided, and closure under weak convergence of the class of conditionally increasing measures is proved. As an application we investigate MTP2 properties of stationary distributions of Markov chains, which are of interest in actuarial science.
منابع مشابه
SOME PROBABILISTIC INEQUALITIES FOR FUZZY RANDOM VARIABLES
In this paper, the concepts of positive dependence and linearlypositive quadrant dependence are introduced for fuzzy random variables. Also,an inequality is obtained for partial sums of linearly positive quadrant depen-dent fuzzy random variables. Moreover, a weak law of large numbers is estab-lished for linearly positive quadrant dependent fuzzy random variables. Weextend some well known inequ...
متن کاملComplete convergence of moving-average processes under negative dependence sub-Gaussian assumptions
The complete convergence is investigated for moving-average processes of doubly infinite sequence of negative dependence sub-gaussian random variables with zero means, finite variances and absolutely summable coefficients. As a corollary, the rate of complete convergence is obtained under some suitable conditions on the coefficients.
متن کاملStrong convergence results for fixed points of nearly weak uniformly L-Lipschitzian mappings of I-Dominated mappings
In this paper, we prove strong convergence results for a modified Mann iterative process for a new class of I- nearly weak uniformly L-Lipschitzian mappings in a real Banach space. The class of I-nearly weak uniformly L-Lipschitzian mappings is an interesting generalization of the class of nearly weak uniformly L-Lipschitzian mappings which inturn is a generalization of the class of nearly unif...
متن کاملOn functional weak convergence for partial sum processes
For a strictly stationary sequence of regularly varying random variables we study functional weak convergence of partial sum processes in the space D[0, 1] with the Skorohod J1 topology. Under the strong mixing condition, we identify necessary and sufficient conditions for such convergence in terms of the corresponding extremal index. We also give conditions under which the regular variation pr...
متن کاملWeak and strong convergence theorems for a finite family of generalized asymptotically quasinonexpansive nonself-mappings
In this paper, we introduce and study a new iterative scheme toapproximate a common xed point for a nite family of generalized asymptoticallyquasi-nonexpansive nonself-mappings in Banach spaces. Several strong and weakconvergence theorems of the proposed iteration are established. The main resultsobtained in this paper generalize and rene some known results in the currentliterature.
متن کامل